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Abstract 

We show that the solutions of the reversible LVA model are bounded. We give a 
sufficient condition for the existence of a globally asymptotically stable stationary 
point. In the case where only the first reaction is reversible in the LVA model, we use 
Liapunov functions to investigate the global behaviour of the system. A certain 
parameter L plays an important role in the phase portrait. The stationary point in the 
axis x is an attractor for L > 1, with a basin containing the open positive quadrant. For 
L < 1 there exists a unique positive stationary point, which is stable for L > 1/2 and 
loses its stability for L < 1/2 via supercritical Hopf bifurcation. 

1. Introduction 

The  L o t k a - V o l t e r r a  model  is of ten  used as a base for  chemica l  osc i l la tory  
mode ls  (e.g. the Exp loda to r  [1,2]) .  It p roduces  conserva t ive  osci l lat ions,  and this 
p roper ty  is not  favourable :  a more  realist ic osci l la tory  model  is expec ted  to show 
l imit  cyc le  behaviour .  The  genera l ized  L o t k a - V o l t e r r a  schemes  [ 2 - 4 ]  conta in  the 
same react ions as the or iginal  L o t k a - V o l t e r r a  model  does,  but  use d i f ferent  (higher-  

order)  rate laws. One o f  these genera l ized  schemes  ( L o t k a - V o l t e r r a - A u t o c a t a l a t o r ,  
shor t ly  L V A  [2,5])  involves  the th i rd-order  react ion A + 2X ---> 3X, which  had been  
used in the osc i l la tory  mode l  "Autocata la tor"  by Gray  and Scot t  [6]. 

Cons ider  the LVA model :  

k 1 
A + 2 X  ---> 3X,  

k2 
X + Y  ---> 2Y,  (1) 

k3 
Y ---> B. 

This  was inves t iga ted  in detail ,  and it was found that this is exp los ive  for  any 
posi t ive parameter  value [2]. Her ing [7] used the Dulac criterion to exclude  oscil latory 

solut ions  in this model .  
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Including reversed reactions [8, 9], the qualitative properties are often essentially 
changed;  for example ,  the reversible L o t k a - V o l t e r r a  model  has a globally 
asymptotically stable stationary point [7]. We want to know how the behaviour of  
system (1) changes if the reactions are reversible. In section 2, we consider the case 
where all the reactions are reversible, and in section 3, only the first reaction will 
be reversible. 

2. Reversible reactions 

In this section, we are going to investigate the model (1) where all the 
reactions are reversible: 

A + 2X ~__ 3X, 

X + Y  ~ 2Y, (2) 

Y ~--B. 

This mechanism with mass-ac t ion  kinetics yields the kinetic equations: 

j(  = klAX 2 - ll X3 - k2XY + 12 Y2 , 

~" = k2XY - 12Y - k3Y + 13B, 

where ki (i = 1, 2, 3) are the rate constants belonging to the forward reactions in (2), 
l i (i = 1, 2, 3) are the rate constants of  the reverse reactions, X and Y are the 
concentrations of  the intermediates of X and Y. A dot denotes differentiation with 
respect to time T. The concentration of  A and B can be considered constant in time. 

Let us introduce the following new variables: 

k2k3 k3 1213 B 
x -  X,  y =  Y, ~ -  T. 

1213B 13B k3 

With this transformation, the system takes the form: 

j: = K2 (KlX2 + y2 _ Llx 3 _ xy),  

= x y - y 2  + K 3 _ K 3 Y  ' 
(3) 

where the dot denotes differentiation with respect to time ~: and the new constants 
are: 

kAl 2 k 2 k~ 1112213B 
K 1 - k 2 ,  K ~ = - - ,  K 3 =  , L I - - - .  

" 12 1213 B k3k3 
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2.1. LOCAL INVESTIGATION 

The stationary points of the system are determined by the equations: 

K~ 
h(y )=  y - -  ~ + K3 = x y > O, 

Y 

f ( x ) = K l x 2  K3 1 - KL---~ll x ) +  l = y  x>O. 

We will need the fol lowing derivatives: 

K 3 - 2  K 3 
h ' (y )  = l + - - 7  > 0 ,  h" (y )  = 3 < 0 ,  (y  > O) 

Y Y 

X 
f ' ( x )  = -~3-3 (2K1 - 3Llx), 

2 
f " ( x )  = -27 (K1 - 3LlX). 

K3 

Since h is an increasing function, there exists its inverse g with the same graph. The 
intersections of  the graphs o f f  and g in the first quadrant give the stationary points. 
It is easy to see that g(0) < 1, g(x) > x if x <  1, g(1) = 1 and g(x) < x  if x >  1. 
Furthermore,  with the notation K = K l / L b f ( K )  = f ( 0 )  = 1. If 0 < x < K, thenf (x)  > 1 
and i f x  > K, thenf (x )  < 1. Now we can draw the graph of the func t ions f  and g (see 
fig. 1). 

' f  

. J  

2 K / 3  & K x 

Fig. 1. 

Knowing the above properties of  the functions f and g, it is easy to see that 
there is at least one stationary state. Indeed, for the difference f ( x ) -  g(x) = F(x),  
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we obtain F(0)  > 0 and lim F = _oo; therefore, there exists at least one Xo > 0, for 
which F(xo) = 0 (F is continuous). T h u s , f  (x0) = g(xo), that is, (xo,f(xo)) is a stationary 
point. 

It is not difficult to prove the following lemma: 

LEMMA 1 

I f f (x0)  = g(xo), then 

1 < x0 < K in the case 1 < K, and 

K < x0 < 1 in the case 1 >K.  

That is, the first coordinate of  the stationary points is between 1 and K. 

Proof 
Let us assume that 1 <K.  If x <  1, then g(x) < 1 andf (x )  > 1. If  x >  K, then 

g(x) > 1 andf (x )  < 1. Thus, i f f (xo)  = g(xo), then 1 _< xo -< K. The proof  for the case 
K < 1 is similar. [] 

COROLLARY 

If K = 1, then there is exactly one stationary state and it is the point (1, 1). 

Let us introduce the interval: I = (K/3, +oo). 

LEMMA 2 

If F(K/3)< 0, then the equation F(x)= 0 has 0, 1 or 2 solutions in t h e  
interval I. (The case where there is exactly one solution is not generic, because then 
F(xo) = F'(xo) = 0.) 

If F(K/3) > O, then the equation F(x) = 0 has exactly one solution in the 
interval I. Thus, we can tell the number of  stationary points whose first coordinate 
is in the interval I. 

Proof 
Let x ~ I. Then f"(x)  < 0 and g"(x) > 0; therefore, F"(x) < 0. By Rol le ' s  

theorem, the function F has at most two roots in the interval I. In the case where 
F(K/3) < 0, the function F can have 0, 1 or 2 roots. In the case where F(K/3) > 0 
at the first root in the interval I, the sign of  the function F changes from positive 
to negative; hence, F '  is negative. F '  is a decreasing function, therefore the function 
F cannot have another root in the interval I because of  the Rolle theorem. [] 

The following theorem is a simple corollary of  the previous lemmas: 
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THEOREM 1 

If K/3 < 1, then there exists exactly one stationary state. 

2.2. GLOBAL INVESTIGATION 

2.2.1. The description of the nullclines 

Let Q denote the nonnegative quadrant in ~2: 

Q= {(x, y) ~ P,2:x >O, y >O}. 

Q is a positively invariant set, that is, the trajectories starting in Q do not leave Q. 
Since x and y are concentrations, they cannot be negative; therefore, we have to 
consider the system only in Q. 

Let us introduce the following notations: 

X 0 = { ( x , y )  e Q : 2 = 0 } ,  

Yo = {(x,y) e Q : ~ = 0 } .  

First, we deal with the sets X0 and Y0 (nullclines). Yo is the graph of the function 
g defined above. The points of Xo are determined by the expression 

Klx 2 + y2 _ Lax 3 _ xy = 0. (4) 

The set X0 is a curve the equation of  which can be expressed in a parametric form 
[10]. Substituting the expression y = xt in (4), we obtain the parametric form for 
X o with the parameter t: 

K1 + t  2 - t  K1 + t  2 - t  
x =  , y =  x t =  t .  

L1 L1 

Let us introduce the curve y: [0, oo)__)]R 2 with the coordinate functions: 

y l : [0 ,  o o) ---) JR, y l ( t ) -  
K 1 + t  2 - t  

& 

y2:[0, oo)---) IR, y2(t) yl ( t ) t  K1 + t2  - t  - -  t .  

After a short calculation, we obtain that in the case where K1 > 1/4, the points of  
7 are in Q and in the case where K 1 < 1/4, the curve goes out of  Q at the parameter 
tl and comes back at the parameter t2, where tl and t2 are the roots of  the equation 
K1 + t 2 -  t = 0 (see fig. 2). 
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Let  us calculate the derivatives o f  the functions %1 and ?'2: 

)'~(t) - 2t  - I ?'~(t) = 3t2 - 2t  + K 1 . 

cl & 

2 6 t  - 2 
y ~ t )  = - -  , ?'~'(t) - - -  

It is easy to see that ?'(t) is below the line x = y if  t < 1, and it is above the line 
x = y i f  t > 1. Figure 2 shows the curve Y. 

The intersection points of  the curve ?' and the graph of  the funct ion g are the 
s tat ionary points. Mult is ta t ionar i ty  can occur: for example,  at the parameter  values 

K1 = 7 < 1 L1 = 1 K3 = 275 
4-'8 4 '  8---~' 4 '  

there are three stat ionary points. 

2.2.2.  T h e  b e h a v i o u r  o f  the t ra j ec to r i e s  

Let  us introduce the notation: 

X+ = { ( x , y )  e Q : k > 0 } ,  

X_ = { ( x , y ) ~ Q : k < 0 } ,  

Y+ = { ( x , y )  6 Q : ~ > o } ,  

Y_ = { ( x , y )  6 Q : ~ < 0 } .  
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The curve  y d i v i d e s  Q into two parts, X+ and X_. Similarly,  the graph o f  g divides  
Q into two parts, Y+ and Y_. In other  words,  in the case where  K~ > 1/4: 

X+ = {(x, y) e Q: x < )'1 (t), y = )'2 (t), t > 0}, 

X_ = {(x,y) e Q:x > )'1 ( t) ,y = )'2(t), t > 0}, 

Y+ = {(x, y)  e Q: y < g(x)},  

Y_ = {(x, y)  e Q: y > g(x)}.  

I f  K1 < 1/4, then X+ = X+I u X + 2 ,  where  

X+I = {(x, y) ~ Q: 0 < t < h, x = 2'1 (t), y < )'2 (t)}, 

x+ 2 = ((x, y) ~ Q:t > t2,x < 2'l(t), y = )'2 (t)}. 

These  regions can be seen in fig. 3. 
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THEOREM 2 

Each solut ion o f  sys tem (3) is bounded.  

Proof 
To prove this theorem, we construct a globally attracting rectangle: [0, a ] × [0, b]. 

Since lim )'1 = + ~ ,  there exists s > 1 for which )'l(s) > 1. Let  a = )'l(s), b = )'2(s). If  
t >  1, then )'2(0 > )'1(0, and i f x >  1, then g(x) <x.  Therefore, g(a) < a = )'l(s) < )'2(s) < b 
(see fig. 4). 

y r 

b 

of 

! 
f B 

/ 

/ /  

~ , tcgf f "t '-  

"',~..,_,.~ 

|( 

¢i 

• a X 

Fig. 4. 

Let  

A = { (a ,y )  ~ Q : 0  < y < b}, 

B = { (x ,b )  ~ Q : 0  < x < a}. 

We shall p rove  that B c Y_ and A c X_, which means  that the trajectories m o v e  
through A and B into the rectangle. If  (x, b ) ~  B, then g(x)<_ g(a)< b, that is, 
(x, b)  ~ Y_. Now,  assume that (a, y)  ~ A. Let  t denote  the posi t ive n u m b e r  for  
which  y = )'2(t) (Y2 is a strictly increasing function, hence t is unique and fur thermore 
t < s). We cons ider  two cases: t < 1/2 and t > 1/2. I f  t < 1/2, then )'1(0 < K < a, that 
is, (a, y ) ~  X_. I f  t > 1/2, then )'1 is a s tr ict ly increas ing funct ion,  the re fore  
)'1(0 < )'l(S) = a, that is (a, y)  E X .  

Thus  the trajectories move  through A and B into the rectangle and every  
t ra jec tory  must  enter  the rectangle. This comple tes  the proof.  
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THEOREM 3 

Let us assume that there exists a unique stationary state (xo, Yo), and let 
Xo = Y1(to), Yo = 72(to). If  to > 1/2, then this stationary state is globally asymptotically 
stable. 

Proof  

Let us introduce the regions 

Q l l = X + n Y + ,  Q I o = X + A Y _ ,  Q o l = x  n Y + ,  Q o o = X _ n Y _ .  (5) 

We use C to denote the boundary of  Qoo and Qlo and D the boundary of  Qoo 
and Qol. We shall prove that in the points of  C and D, the trajectories move  into 
Qoo, therefore Qoo is an attractor. Let us denote the functions on the r.h.s, of  (3) 
by P and Q: 

P(x ,  y) = K2(K1 x2 + y2 _ LlX3 _ xy), 

Q(x ,  y) = x y -  yZ + K3 _ k3Y" 

Therefore,  Xo = {(x,y) ~ Q : P ( x , y )  =0} and Yo = {(x,y) ~ Q : Q ( x , y )  =0} .  At a 
point  of Xo, the trajectory moves from X_ into X+ or in the opposite direction 
according to the angle of  the vector grad P and the tangent vector of  the 
trajectory [11]. If this angle is an acute angle, then the trajectory goes from X_ into 
X+, and if this angle is an obtuse angle, then it moves  in the opposite direction. We 
can similarly determine the direction of  the mot ion of  the trajectories at the points 
of  Yo. 

Since C = Xo c~ Y_, therefore at a point of C the vector (0; - 1) is a tangent 
vector of  the trajectory. The scalar product  of  this vector with grad P at the point 
(x, y) is x - 2 y  (see fig. 5). 

Because of the conditions of the theorem, we have C c { 7(0:  t > 1/2 }. Therefore, 
if (x, y) ~ C, then x - 2y = ?'l(t) - 272(t) = )'l(t)(1 - 2t) < 0. Consequently,  at a point  
of  C the scalar product  is negative; therefore, the trajectories move from Qlo to Qoo. 
One can similarly calculate that at the points of  D the trajectories move  from Qol 
into Qoo, thus Qoo is an atttractor. 

Since Qoo is an attractor, then periodic orbits cannot exist because they ought  
to pass through Qoo. By theorem 2, the trajectories enter a rectangle in which there 
is a unique stationary state (no periodic orbit); thus this stationary state is globally 
asymptotically stable. [] 

COROLLARY 

If K < 1, then there exists a unique globally asymptotically stable stationary 
state. 
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Proo f  

We have already seen that i f K  < 1, then there exists a unique stationary point 
for which x0 > K. Hence, to > 1 > 1/2, and consequently this stationary point is 
globally asymptotically stable. 

3. Only one reversible reaction 

In this section, we shall investigate model (1) when only the first reaction 
is reversible: 

A + 2 X  ~ 3X, 

X + Y  --~ 2Y, 

Y --) B. 

This mechanism with mass -ac t ion  kinetics yields the kinetic equations 

= klAX 2 - llX 3 - k2XY , 

f "  = -  3r, 

where k i (i = 1, 2, 3) are the rate constants in (1) and l 1 is the rate constant of  the 
reverse reaction. We can simplify this system with the transformation 

X = X ll ~ k?A2 
klA y = Y, I: = ll T. 
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Using this transformation, we obtain the differential equations: 

= X ( X  -- X 2 -- y) ,  

= K y ( x  - L ) ,  

where 
K = k2 L = k311 

v 

k 1A k 2 k I A 

(6) 

3.1. LOCAL INVESTIGATION 

The system has three stationary points in the positive quadrant Q: (0, 0), (1, 0), 
(L, L -  L2), the last one is in Q only in the case L < 1. 

In the point (0, 0), the eigenvalues are: )t,1 = 0, ~ 2 = - K L ;  therefore, we 
cannot decide the stability of  the stationary point. If L < 1, then the point (1, 0) is 
a saddle (the eigenvalues are: Aq = - 1, ~2 = K(1 - L)), and if L > 1, then it is a 
stable node. In the point (L, L - L 2 ) ,  the eigenvalues are 

L(1 - 2L)  + ~-D 
)~12 = ' 2 

where D = L2((1 - 2L) 2 - 4K(1 - L)). We investigate the behaviour of  this stationary 
state in the (L, K) parameter plane• If D < 0, then it is a focus, and if D > 0, then 
we have a node. If 1 - 2L < 0, then the stationary state is stable, and if 1 - 2L > 0, 
then it is unstable. In fig. 6, we can see the bifurcation diagram of  the stationary 
state. 
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3.2. GLOBAL INVESTIGATION (LIAPUNOV FUNCTIONS) 

THEOREM 4 

If L > 1, then the stationary point (1, 0) is globally asymptotically stable in 
the region (0, oo) × [0, ,,~). 

P r o o f  

Let us consider the Liapunov function: 

V ( x , y )  = Kx  + y -  K i n  x. 

The curves V(x, y)  = k are determined by the equation y = K ( l n x -  x) + k (fig. 7). 

Yl 

O 

/ 

X 

Fig. 7. 

The derivative of the function is negative in Q (except in the stationary points): 

I / =  K(1---xl l x  + 3) = K ( 1 - 1 1 x ( x  - x 2  - y)  

+ K y ( x  - L)  = - K x ( x  - 1) 2 + Ky(1 - L )  < O. 

Thus, the stationary point (1, 0) is globally asymptotically stable in the region 
(0, oo) x [o, [] 

PROPOSITION 1 

The trajectories starting in the open positive quadrant (the interior of the 
region Q) cannot enter the stationary point (0, 0). 
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P r o o f  

We shall prove that the trajectory starting in a point (Xo, Yo)~ Q, where 
Xo < L cannot tend to the origin. Consider the Liapunov function: 

V ( x , y )  = Kx + y - K l n x .  

The derivative of  the function: 

(1' = K ( x  - L)(1 - x) 

is negative if x < L; therefore, the trajectory starting in (x0, Y0) remains in the 
domain {(x, y)  ~ Q: V(x,  y)  < V(xo, y0)}. The origin is not contained in the closure 
of  this domain, because the closure is { ( x , y ) E  Q : y  < V(xo, yo )+  K ( L l n x - x ) } .  
Hence, the trajectory cannot tend to the origin. [] 

PROPOSITION 2 

The trajectories cannot go to infinity in Q01. 

P r o o f  

Use the Liapunov function 

V ( x ,  y )  = 2 K x  + y -  2KLIn x. 

The "interior" of  the level curves V(x, y)  = k (i.e. the domain {(x, y )  ~ Q : V(x,  y)  < k} 
are bounded domains. The derivative of  the Liapunov function is 

~' = K ( x  - L)(2x  - 2x 2 - y). 

We shall give an indirect proof. Let us assume that a trajectory (x(t) ,  y ( t ) )  in Qol 
goes to infinity. Then x( t )  > L and y( t )  would tend monotonically to infinity. This 
would involve the existence of  a positive number to for which ~' = K ( x ( t )  - L ) ( 2 x ( t )  
- 2xZ(t)  - y ( t ) )  < 0 if t > t o. Let k = V(x(to),  y(to)).  Hence, (x(t) ,  y ( t ) )  ~ {(x, y) 
E Q : V(x,  y) < k} if t > to. This is a contradiction because an unbounded trajectory 
would stay in a bounded domain. [] 

Finally, we deal with the stationary point (L, L - L 2) in the case L < 1. Consider 
the function 

V ( x ,  y )  = Kx + y - KL In x - L(1 - L) In y. 

The level curves of  this function are closed ,turves around the stationary point (see 
fig. 8). The derivative of  the function: 

~'= K -  x+ 1 ~ = K ( x - L ) 2 ( 1 - L - x ) .  
x y 
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Thus, if  x < 1 - L, then I;' > 0, and if x > I - L, then ~2 < 0. Let k denote the value 
of  the function V on the level curve whose tangent line is x = 1 - L. I f L  > 1/2, then 
the s t a t ionary  state is s table  and its a t t rac t ing domain  con ta ins  the set  
{(x, y) ~ Q: V(x, y) < k}. If there exists a periodic orbit, then it intersects the line 
x = l - L .  

We can use the Hopf  theorem [12] to prove that Hopf  bifurcation occurs 
at the parameter value L = 1/2. Let us introduce the transformation ~ = x - L ,  
r /= y - ( L - L  2) to system (6). We obtain the following equations: 

= ~(L  - 2L 2) - r/L - ~ r /+  ~z(1 - 3L) - ~ 3 ,  

0 = + L - L2) .  

Let # = 1/2 - L. The eigenvalues of  the Jacobi matrix in (0, 0) are: 

2 t ,z(#  ) _  1 - 2 2 #  /1+  /z z K 
- -  _ T(1+2 ) . 

In a suitable neighbourhood of  # = 0, the discriminant is negative; therefore, 

Re ~ ( # )  - 
(1 - 2n)/  

Let A(#) = a ( # )  ± i ~ (# ) ,  ~(0) = 0, a ' (0 )  = 1/2 and a)(0) = ~K/~18. Thus, at the 
parameter value # = 0 the system has two purely imaginary eigenvalues and a ' (0 )  ~ 0. 
That is, the conditions of  the Hopf  theorem are fulfilled. According to the theorem, 
a periodic orbit occurs. We shall find out that this periodic orbit is a stable limit 
cycle. At # = 0, the eigenvalues of  the Jacobi matrix are: +i~K/8 and an eigenvector 
is" 
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_i ff..._~K = l + i  " ~  - .  

Using this eigenvector,  we introduce the following transformation: 

0  22) 
This transformation yields the system: 

4 - K  u 2 
it = - ' - ~  V + - - ~  - u v  - - -  

f9 = - - - - ~ u  + K u v .  

From this form, we can determine the stability of the limit cycle. Using the expression 
(3.4.11) in [12], we obtain a = -  1/4 < 0. Thus, the bifuraction is supercritical, that 
is, the limit cycle is stable. 

Summarizing, we can establish that in the case L > 1 system (6) is not explosive, 
but it is still an open question whether  this statement is also valid for L < 1. 
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